
5

10

15

20

25

30

35

40

45

50

Copyright © 2004 John Wiley & Sons, Ltd.

Scalable multicast based filtering and tracing
framework for defeating distributed DoS attacks

By Jangwon Lee*,† and Gustavo de Veciana

In this paper we present a distributed scalable framework to support on-
demand filtering and tracing services for defeating distributed denial of
service attacks. Our filtering mechanism is designed to quickly identify a
set of boundary filter locations so that attack packets might be dropped
as close as possible to their origin(s). We argue that precisely identifying
the origins of an attack is not achievable when there is only a partial
deployment of tracing nodes—as is likely to be the case in practice. Thus
we present a tracing mechanism which can identify sets of candidate
nodes containing attack origins. Both mechanisms leverage multicasting
services to achieve scalable, responsive and robust operation, and operate
with a partial and incremental deployment.
Performance evaluations of proposed approaches on both real and
synthetic topologies show that a small coverage of filtering and tracing
components throughout a network can be effective at blocking and
localizing attacks. Copyright © 2004 John Wiley & Sons, Ltd.

Jangwon Lee works in the Computer Science Department, North Carolina State University.

Gustavo de Veciana works in the Electrical and Computer Engineering Department, University of Texas at Austin.

*Correspondence to: Jangwon Lee, Computer Science Department, North Carolina State University, USA.
†E-mail: jangwlee@ece.utexas.edu

1. Introduction

Denial of Service (DoS) attacks are one of
the greatest threats to today’s Internet.
They not only degrade performance but

deprive legitimate users of basic access to network
services. As seen in frequent news headlines
attacks are becoming increasingly prevalent and
evolving since the first spectacular attack on high-
profile web sites in February 2000.1 Despite their
diverse character, such attacks share a common
feature: they exploit defects or weaknesses of
various network components ranging from appli-
cations, operating systems to protocols. Attacks
using implementation defects or bugs in network
components, can be prevented by frequent system
updates and software patch work. However, it is
much harder to thwart attacks which exploit

intrinsic vulnerabilities and characteristics of the
existing IP infrastructure.

For example, in IP, irrespective of a receiving
side’s intent, any host can basically send packets
to any other host provided that those hosts are
connected to the Internet. This simple feature of IP
allows attackers to launch DoS attacks by simply
inundating victims with large amounts of useless
traffic. In turn, such traffic consumes network
resources along the way to victims and eventually
degrades performance for other users sharing
these network resources. In a distributed DoS
(DDoS) attack, i.e., one which is carried out
by multiple compromised hosts, the damage can
become exceedingly detrimental. Moreover, IP has
no mechanism for checking or controlling the
correctness of the sender’s address. This facilitates
spoofing, i.e., placing incorrect source IP addresses

INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT
Int. J. Network Mgmt 2004; 14: 000–000 (DOI: 10.1002/nem.543)

21

3

NEM543 8/25/2004 5:49 PM Page 1

in packets to conceal the true origins of the
packets. Furthermore, it is difficult to identify the
physical locations of attacks in an IP network due
to its stateless nature (even without spoofing), i.e.,
routers forward packets based on destination
addresses alone and maintain no state information
on traffic flows. The identification of the origins of
attacks is even more difficult in the case of a DDoS
attack where attackers may inject multiple, identi-
cal packets at multiple locations.

The critical innovation in DDoS attacks is its
distributed nature. Even a small number of attack
packets from each compromised host can eventu-
ally become a large traffic flow, inundating a target
system. We argue that the solutions to thwart
DDoS attacks should also be distributed to be effec-
tive. The local solutions on the victim computer
or in its local network without outsider’s co-
operation, can neither identify where the packets
are coming from nor effectively mitigate the
possibly large volume of attack traffic.

W e argue that the solutions to thwart
DDos attacks should also be

distributed to be effective.

One way to deal with such attacks is proactive
filtering.2,3 The key idea is to configure routers to
drop spoofed packets whose source IP addresses
are inconsistent with the network topology. Note
that the strength of this approach is its proactive-
ness, i.e., attacks can be eliminated before they
affect victims. However, if DoS attacks are
infrequent, most resources allocated to proactive
filtering are wasted except when spoofed packets
are actually dropped. Furthermore, attackers may
evade proactive filtering by forging IP addresses
using hundreds or thousands of legitimate host
addresses within a given domain.

By contrast, in this paper our focus is on two
reactive approaches: on-demand filtering and tracing.
Our approach is reactive in that actions are initiated
after an attack reaches a victim. Both tracing and
on-demand filtering mechanisms can make up for
the above-mentioned deficiencies of IP networks.
That is, a tracing mechanism can identify the true
origins of an attack and a filtering mechanism
can enable a host to request unwanted packets

to be dropped early on, before they reach the
victim.

The following are some desirable characteristics
that on-demand filtering and tracing mechanisms
should have.

• Scalability. Mechanisms should be scalable to
benefit a co-operation across a number of dif-
ferent administrative domains.

• Promptness. By the nature of reactiveness,
filtering and tracing should be performed
quickly before the victim is seriously
damaged or there no longer exists a trail of
information.

• Flexibility. Mechanisms should allow hetero-
geneous equipment and proprietary opera-
tion across different administrative domains.

• Distributed. From the perspective of robust-
ness, it is preferable that mechanisms be
implemented in a distributed manner rather
than relying on central points.

• Partial and incremental deployment.

Based on the above desirable characteristics, in
this paper we propose a framework which pro-
vides filtering and tracing services to aid in
thwarting DDoS attacks. We set two goals in the
paper. The first one is to block attack packets as
close as possible to attack origins by way of filter-
ing components that are distributed over the
Internet. Second, under a partial deployment
environment where only a subset of routers are
tracing-enabled, it becomes impossible to pinpoint
the precise origins of attack packets. Thus, our
objective for tracing is to identify sets of candidate
nodes containing attack origins. The proposed
solutions are based on multicasting service to
achieve a number of desirable characteristics, e.g.
scalability, distributedness, quick response and
robustness. Furthermore, they rely on existing
monitoring and filtering mechanisms, allowing
heterogeneity from different network domains.

This paper is organized as follows. Section 2
introduces components and attack models used
throughout the paper. In Sections 3 and 4, we
discuss our objectives and our solutions for filter-
ing and tracing mechanisms respectively. Section
5 includes a performance evaluation for the pro-
posed framework and is followed by Section 6
wherein we include comments on implementation
and various possible modes of operation. In
Section 7, we discuss the advantages and short-

J. LEE AND G. DE VECIANA

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50

NEM543 8/25/2004 5:49 PM Page 2

comings of previous approaches to defeating and
mitigating attacks and contrast these with our
work. Section 8 concludes the paper.

2. Models
—2.1. Attack Model—

Consider an attack whose target is a node, v,
referred to as the victim. A victim can be an end
host, a router or a network border device such as
a firewall. In the sequel, we will refer to the set of
attack nodes A as those participating in the attack.
We will leave the initiation time of the attack
unspecified. Thus, the tuple of the set of
attack nodes and the victim, i.e., (A, v) represents
an attack incidence. In the case of a distributed
attack, |A| is greater than 1 and the locations
of attack nodes are potentially widespread. For
each attack node, say, ai Œ A, the attack path for ai

is an ordered list of nodes traversed by attack
packets from ai to v, excluding ai itself. An attack
graph induced by (A, v), denoted by AG(A,v), con-
sists of all links and nodes traversed by attack
packets associated with nodes in A and the victim
v. For example, in Figure 1, (r3, r4, r5, r6, v) is a3’s
attack path and the dotted lines represent an
example of the attack graph for attack incidence
({a1, a2, a3}, v). Attack paths and graphs may vary
during the attack period due to routing instabili-
ties and dynamic attack patterns. Throughout this
paper, an attack origin is referred to as a local router
to which the attack node is attached. For example,
r1 is the attack origin of a1 in Figure 1. We will refer

to an attack signature AS(A,v) as a common feature
shared by attack packets generated from A. For
example, for a smurf DoS attack case, an attack sig-
nature could be ICMP echo protocol and a range
of source IP addresses.4 For example, a smurf
attacker sends a stream of ICMP echo requests to
the broadcast address of the reflector subnet. Since
the source addresses of these packets are falsified
to be the address of the target, many hosts on the
reflector subnet will respond, flooding the target.
Thus, the source addresses of the echo reply
packets are clustered in a few address prefixes.
Note that extracting an attack signature is a crucial
starting point for most reactive mechanisms and it
is not easy to obtain a clear and well-matching
attack signature with real attacks. However, in
practice, common rough characteristics for attack
packets can be generally identified and used for fil-
tering or tracing purposes.5 In the case where
extracting the attack signature is impossible, the
attack packet itself can be used for the signature,
as with the approach in Reference 6. For mitigat-
ing DDoS attacks without attack signatures, refer
to Reference 7.

—2.2. Framework Model and
Assumptions—

Our framework includes the following
components.

• Detecting component. Reactive approaches to
DoS attacks require a component which can
detect incidences of attacks and generate an
attack signature by extracting a feature shared
by attack packets. This attack signature is
further used in the tracing and filtering
processes.

• On-demand filtering component. An on-demand
filtering component drops packets con-
forming to a rule set derived from an attack
signature.

• Tracing component. When a tracing component
is queried for a given attack signature, it can
check for the existence of packets with the
attack signature in the past or current traffic
traversing the component.

In our framework, we assume that the above
components have multicasting-enabled function-
ality. In this paper, we assume that these com-
ponents can communicate with each other in a

DEFEATING DISTRIBUTED DENIAL OF SERVICE ATTACKS

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50
v

a2
a1

a3

r1

r2

r3

r4

r5

r6

Figure 1. An example of an attack incidence

NEM543 8/25/2004 5:49 PM Page 3

secured manner. How to secure multicasting chan-
nels is not in the scope of this paper. Refer to Ref-
erences 8–10 on this issue. Multicasting can be
supported at either network-layer or application-
layer,† and there are various available implemen-
tation methods for each component. We defer
those discussions to Section 6. Note that it is not
our intent to specify multicasting methods or
propose a specific or new implementation method
for the above components. The main goal of this
paper is to propose a framework which provides
flexible filtering and tracing services.

We refer to entities which provide detecting, fil-
tering and tracing services to victims as detector,
filter and tracer which are equipped with detecting,
on-demand filtering and tracing components,
respectively. Multiple functionalities can be co-
located and perform multiple roles. Note that each
entity is associated with a location of interest. That
location may be an end host, a router or a link
depending on the implementation. Without loss of
generality, throughout the paper, we assume that
filters and tracers are located at internal nodes (i.e.,
routers), and detectors are co-located at victim
nodes. Usually detector nodes, D, will be located
at highly-defended and secured strong points
such as high-profile web servers or network entry
points. Filter nodes, F, and tracer nodes, T, could
be located at network entry points or distributed
all over the Internet. In our framework, we assume
a partial deployment of components over the Inter-
net, i.e., only a subset of nodes are equipped with
detecting, filtering and tracing functionalities—
this is deemed a realistic environment.

Given a particular attack incidence (A, v), any
set of nodes S can be partitioned into two subsets:
positive and negative nodes, where positive nodes
are on the attack graph of (A, v) and negative
nodes are not. That is, positive nodes, denoted by
S(A,v), are given by S � AG(A,v). For a given set of
nodes S and ai Œ A, we define a boundary node,
b(ai), as the node in S that is first encountered by
attack packets making their way towards a victim
v. We refer to a boundary interface as the interface
where attack packets enter in a boundary node. We
denote by BS(A,v) the collection of boundary nodes

associated with an attack incidence (A, v). Letting
S be a set of filter nodes, F, or a set of tracer nodes,
T, we can obtain sets corresponding to positive,
negative and boundary filter (tracer) nodes associ-
ated with a given attack incidence. For example, in
Figure 2 the filter nodes (shadowed nodes) have
been deployed in the network shown in Figure 1.
For an attack incidence (A, v) = ({a1, a2, a3, a4}, v),
F(A,v) = { f1, f2, f3, f5, f6}, b(a1) = f1 and BF(A,v) = { f1, f2, f3,
f5}.

3. On-Demand Filtering
—3.1. Objective—

The objective for on-demand filtering consid-
ered in this paper is to block attack packets as close
as possible to the attack nodes by using a set F of
co-operative filter nodes distributed over the
Internet. One might consider a centralized solu-
tion wherein each detector maintains and queries
all the filters, F, over the Internet. However, this
approach may incur high overheads and seems to
scale poorly when there is a large number of filter
or attack nodes. We observe that boundary filter
nodes play a key role in achieving the objective,
since they are the filtering nodes first met by attack
packets from A to v. That is, performing filtering
only at boundary filter interfaces is resource-
efficient while blocking attack packets as early as
possible given the available set of filters F. Thus,
the filtering objective becomes a resource discov-

J. LEE AND G. DE VECIANA

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50
†As will be seen in the sequel paper, for network-layer multicasting,
our framework does not require reliability due to its soft-state
property.

v

a2
a1

a3f1

f2
f4

f3

f5
f6

f7

a4

BF(A, v)

Figure 2. An example of filter deployed network

NEM543 8/25/2004 5:49 PM Page 4

ery problem, i.e., finding boundary interfaces
given a set of filter nodes, F, and a particular attack
(A, v).

T he objective for on-demand filtering is to
block attack packets as close as possible

to the attack nodes.

—3.2. Our Solution—

3.2.1. Filter multicast session—The key idea
in our filtering solution is that all filter nodes sub-
scribe to a filter multicast session. As with the ‘911’
telephone number allotted to serve police, fire and
emergency situations in the United States, in our
approach, a filter multicast session is dedicated to
a communication channel to support on-demand
filtering service.

Once an attack, (A, v), is launched and detected
by a victim v, it joins the filter multicast session
and requests filtering service by multicasting a
filter request packet. In the case where a detector and
a victim are not co-located, the detector will act as
an agent on behalf of the victim. For simple expo-
sition, we assume that the victim detects attack
and requests filtering operation before attack
packets may force the victim to give in. The
request packet contains an attack signature, AS(A,v),
used to generate appropriate filtering rule sets,
and a filtering period dv, the desired duration over
which filtering is to be performed. Once each filter
receives an initial request packet, it associates its
interfaces with either the ON or OFF state based on
the following decision rule (Figure 3).

The state of each interface is basically deter-
mined according to whether it carries the attack
packets over two equal-sized intervals at the
beginning and the end of the filtering period: [t, t
+ di] and [t + dv - di, t + dv]. Note that the range for
a in Line 2 guarantees that there is no overlap
between two intervals.

Given an attack incidence, (A, v), interfaces at
filter nodes can be classified into three types: (1)
negative: whose interface state should be OFF after
the first interval (Line 6), (2) boundary: whose
interface state should be ON after the second inter-
val (Line 12), and (3) positive but not boundary:

whose interface state should be OFF after the
second interval (Line 10). The third type may
happen because filtering requests are handled in a
distributed and asynchronous manner at each
filter node. Note that in the above decision rule,
even a single packet matching with the attack sig-
nature enables an interface to be put in the ON
state. One may consider a threshold method, i.e.,
only when the number of packets matching the
attack signature is larger than some specified
threshold value, does the interface enter the ON
state.

Each filter node which has at least one interface
in the ON state (referred to as ON filter node) sends
a filtering report packet to the victim containing
some filtering statistics, e.g., the number of packets
dropped on each of its ON interfaces. Based on
report packets (whether the attack persists or not),
the victim can renew its filtering request by multi-
casting another filtering request packet. As the
state of each interface at filter nodes has been
decided after the initial filtering request packet,
OFF filters simply ignore the request, while ON
filter nodes keep filtering at ON interfaces until
either a filtering timeout (dv) expires, or a renewal
arrives, in which case the filtering period is
restarted and again a filtering report packet is sent
to the victim.

Note that state information should be preserved
long enough that the next filtering request packet
arrives, i.e., next renewal. However, it should be
eventually eliminated if no renewals arrive. Thus,

DEFEATING DISTRIBUTED DENIAL OF SERVICE ATTACKS

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50

1: { For each interface, i, except the one receives the re-
quest packet}

2: { t : filtering initiation time, di = a dv (0 < a £ 0.5) }
3: { install a filtering rule set conforming to AS(A,v) at t}
4: if no attack packets dropped in [t, t + di] then
5: stop filtering
6: make i state OFF
7: else
8: keep filtering

then

else

end if
end if

9: if no attack packets dropped in [t + dv − di, t + dv]

10: make i state OFF
11:
12: make i state ON
13:
14:

Figure 3. Interface state decision algorithm

4

NEM543 8/25/2004 5:49 PM Page 5

once a node gets a filtering request packet, it
restarts the state elimination timer (e.g., 3*dv). After
the timer expires (i.e., no renewal packet prior to
time-out), it eliminates state information associ-
ated with the attack signature, AS(A,v).

3.2.2. Adaptiveness—In the above protocol,
filter states are determined upon receipt of an
initial request packet, and remain fixed before they
expire. However, even for the same attack inci-
dence, the boundary filter nodes may change due
to (1) dynamic attack patterns, e.g., an attacker
may have a strategy that periodically turns on and
off some attack nodes, and (2) routing instability,
i.e., packets injected by the same host to the
same destination may travel different paths. This
requires a filtering mechanism to adapt to
dynamic changes in the set of boundary filter
nodes (interfaces).

To this end, we include a reset flag in the filter-
ing request packet and add the following be-
havior at filter nodes: (1) if the received request
packet’s reset flag is 0, then perform the state deci-
sion procedure for only ON interfaces, and, (2) if
the reset flag is 1, then perform the state decision
procedure for all the interfaces ignoring previ-
ously determined states. These rules ensure a tran-
sition from ON to OFF and a transition from OFF to
ON, respectively. A failure in this state transition
might eventually be detected by the victim, since
attack packets may reach the victim.‡ Thus, the
victim node will periodically send filter request
packets with the reset flag set to either 1 or 0
depending on whether it is seeing attack packets,
or not, until the attack is suppressed or ends.

4. Tracing
—4.1. Objective—

The ultimate goal of a tracing mechanism is
to identify attack nodes, e.g., {a1, a2, a3} for the
example in Figure 1. However, the goal is usually
relaxed to determining the origins of the attack,
i.e., {r1, r2, r3}. This is because tracing-enabled func-

tionality is usually associated with routers, and
MAC address spoofing is possible. Most existing
tracing approaches6,11,12 focus on developing mech-
anisms which can discover an attack graph. Once
the attack graph is discovered, the origins of the
attack can be pinpointed. However, precisely pin-
pointing the origins of an attack is not achievable
when there is only a partial deployment of tracing
nodes—as is likely to be the case in practice. Thus,
rather than identifying the exact attack graph, we
set up our tracing objective as that of localizing
attack nodes by providing sets of candidate nodes,
possible attack origins. The effect of inaccurate
map and dynamic routing of packets will be dis-
cussed in Section 6.

—4.2. Our Solution—

4.2.1. Localization—First, we define the
notion of ‘candidate nodes’ used in this paper.
Candidate node sets are determined based on the
set of boundary tracer nodes. Recall that boundary
tracer nodes BT(A,v) are simply tracer nodes which
are first met on the path of attack packets associ-
ated with given attack incidence (A, v).

Let Mv denote a network map (tree) of upstream
nodes rooted at the victim, v. For any node m Œ
Mv, let Mm denote the subtree rooted at m. For each
boundary tracer node n Œ BT(A,v), let the set of
candidate nodes of n, Cn, be

Note that Cn is obtained by subtracting all subtrees
rooted at descendant tracer nodes of n from the
subtree rooted at n. For example, in Figure 4 where
tracer nodes are shown in black, boundary tracer
nodes are {r3, r11, r17, r7} and their sets of candidate
nodes are C1 = {r3, r2}, C2 = {r11, r10, r12}, C3 = {r17, r15,
r16}, C4 = {r7, r6, r4}, respectively.

We further define a node c to be a boundary
negative tracer node with respect to n Œ T(A,v) if

1. c is a negative tracer node,
2. n is on the path from the root, v to c, and
3. there are no other nodes in T on the path from

n to c.

For example, r3’s boundary negative node is r1

while r7 has no boundary negative tracer nodes in
Figure 4.

C M Mn n x
x M Tn

=
Œ «

\ U

J. LEE AND G. DE VECIANA

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50

‡Receiving attack packets at the victim side does not necessarily indi-
cate the failure of state transitions. Consider the case where there is
no filter node along the way from the attack nodes to the victim.
However, we do not assume such a case.

NEM543 8/25/2004 5:49 PM Page 6

The key idea underlying our tracing approach is
that a set of candidate nodes contains at least
one origin of an attack. For example, consider the
attack node a1 in the network shown in Figure 4
where tracer nodes are shown in black. With the
following information: (1) r3 is a boundary tracer
node, (2) r1 is a negative tracer node, and (3) the
network topology, one can conclude that {r2, r3} is
a set of nodes which contain an attack origin(s).

A positive attack graph is defined as the collec-
tion of all links and nodes traversed by packets
from each node in T(A,v) (i.e., positive tracer nodes),
to the victim v. We define an expanded attack graph
as the positive attach graph plus the collection of
all links and nodes traversed by packets from
boundary negative nodes to the victim. For the
attack incidence in Figure 4, its expanded attack
graph is depicted in Figure 5. Thick links and
nodes from the victim to positive tracer nodes
comprise the positive attack graph.

Note that sets of candidate nodes can be
obtained with the following information: (1) a
network map of upstream nodes to the victim,
(2) an expanded attack graph, and (3) boundary
tracer nodes. By overlapping the two graphs, i.e.,
network map and expanded attack graph, we can
identify candidate node sets. The network map of
upstream nodes to the victim can be obtained
using a tool such as Skitter13 or that developed in
Reference 14. Thus the remaining task is to obtain
an expanded attack graph and identify the bound-
ary tracer nodes.

4.2.2. Obtaining expanded attack graphs—
Note that obtaining a positive attack graph is
the goal of existing tracing approaches.6,11,12 In this
section, we propose a new approach to obtaining
a positive attack graph and then extend it to
determining the expanded attack graph.

As with our filtering approach, we propose to
have a multicast session support tracing services,
referred to as a tracer multicast session. This session
is joined by the set of tracer nodes, T. Once an
attack incidence, (A, v) is detected at the victim,
then v joins the tracer multicast session and sends
a tracing request packet containing a signature,
AS(A,v).§ Upon receiving the tracing request packet,
each tracer node checks whether it has carried
attack packets conforming to the attack signature.

In order to obtain path information from tracer
nodes to a victim, we propose to use the traceroute
program. Traceroute provides an executing node
with a forward path information from it to a des-
tination. After checking whether it is seeing any
attack traffic, each positive tracer node n in T(A,v),
performs a traceroute toward the victim, which
enables it to identify the forward path from n to v.
Then n sends a tracing report packet including this
path information to the victim. By collecting paths
reported by positive tracer nodes, the victim can
construct a positive attack graph—a subset of an

DEFEATING DISTRIBUTED DENIAL OF SERVICE ATTACKS

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50

v

a2

a1
a3

r1

r12

r11

r7

r2

r3

r4

r6

r8

r9

r10

r13

r14

r15

r16

r17

r18

r19

r20

r21

a4

C C C

C

1 2
3

4

Figure 4. An example of tracer deployed network

§Tracing request packets may contain the attack incidence time for
post-mortem tracing if it is supported.

v

r1

r11

r7

r2

r3

r4

r6

r9

r10

r14

r15

r17

r18

r19

r20

r21

Negative tracer node

Positive tracer node

Boundary tracer node

Figure 5. An expanded attack graph

NEM543 8/25/2004 5:49 PM Page 7

attack graph. A simple approach to obtain an
expanded attack graph is to have every negative
tracer node also perform a traceroute to the victim
and send a tracing report packet. However, this
will not scale when there is a large number of
(negative) tracer nodes in a network. Thus, we
propose the following mechanism. Once a tracer
node is determined to be positive, after some time,
the node performs a scoped multicast by sending a
tracing solicit packet to its neighborhood with Time-
to-Live (TTL) set to some value, k. The TTL value
is first specified in the original tracing request sent
by the victim. Upon receiving the tracing solicit
packet, a positive tracer node simply ignores it, but
a negative tracer node performs a traceroute to the
victim and sends a tracing report packet to the
victim. Tracing report packets require a flag repre-
senting whether they were generated by a positive
or negative tracer node. Note that this mechanism
makes negative tracer nodes within k TTL distance
from positive tracer nodes participate in the
tracing operation. However, this mechanism may
only produce an approximate expanded attack
graph. This depends on the scope of the tracing
solicit packet and the locations of tracer nodes. For
example, if the TTL value is too large or tracer
nodes are closely located, unnecessary negative
nodes may be included in the graph. However, in
this case, one can still identify candidate nodes. In
the other case, i.e., where the TTL value is too
small or tracer nodes are too far away, one fails to
obtain a set of candidate nodes. Reflecting this
practical situation, we classify sets of candidate
nodes into two classes: closed or open, i.e., identi-
fied or unidentified candidate nodes respectively
from the perspective of a victim. This classification
depends on the deployment of tracer nodes, i.e.,
how many and where, as well as which TTL value
is used. To reduce the number of open sets, we can
envisage the following scheme: after the victim
recognizes the existence of sets of candidate nodes
which are open, it may perform another tracing
operation with a larger TTL value. However, even
though this can reduce open sets to closed ones,
too large a number of nodes in a closed set requires
lots of search effort within the set, which in turn
makes localization expensive.

4.2.3. Identification of boundary tracer
nodes—Once one obtains an expanded attack
graph, it is clear how to identify boundary tracer

nodes residing at the end of a positive attack
graph, e.g., r3, r11 and r17 in Figure 5. However, it is
difficult to find boundary tracer nodes residing at
internal nodes of a positive attack graph, e.g., r7 in
Figure 5. This is because the packets generated at
attack nodes associated with a boundary tracer
node cannot be differentiated from packets
injected at upstream attack nodes. Note that this
problem exists even with networks in which
tracers are fully deployed. For example, in Figure
4, a4’s attack origin is invisible unless tracing com-
ponents have an ability to not only check if an
attack packet has passed but also acquire infor-
mation about which interface(s) attack packets are
flowing through. This problem can be handled by
the following methods: (1) filtering and tracing can
be performed jointly or (2) packets from different
attack nodes can be further differentiated, e.g.,
instead of using the attack signature shared by all
attack nodes, using packets themselves may dif-
ferentiate those attack packets.

5. Performance Evaluation
We conducted three sets of simulations varying

topologies and placement strategies. The objective
was to explore two questions: how many and
where should filters and tracers be deployed in the
network to be effective for blocking and localizing
attacks? We do not claim these experiments are
comprehensive. Instead, our goal is to provide
insights on how the proposed framework per-
forms in several representative settings. Below we
first discuss performance metrics for the proposed
filtering and tracing framework, and then present
our simulation results.

—5.1. Performance Metrics—

5.1.1. Filtering metrics—We define the cost of
an attack node, ai, as the product of two quantities:
the amount of attack traffic injected at ai, w(ai)
and the distance (i.e., the number of hops) from
the attack node to the victim, d(ai, v). This can
be roughly considered as a measure of network
resources (e.g., bandwidth, routers’ CPU cycles,
etc.) that are wasted in processing attack packets
from ai to v. For an attack incidence (A, v), the total
attack cost c(A, v) is

J. LEE AND G. DE VECIANA

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50

NEM543 8/25/2004 5:49 PM Page 8

When filter nodes F are deployed and filtering is
conducted at the boundary, the total attack cost
c(A, v, F) is reduced to

where bf(ai) is the boundary filter node associated
with attack node ai. To demonstrate the amount of
traffic that can be blocked using filtering, we
define the relative attack cost g as the ratio of the
cost with filters deployed to the cost without, i.e.,
g = c(A, v, F)/c(A, v). Note that this cost metric is
from the perspective of the network rather than
the victim. Although the proposed metric is
simple, it captures well features associated with
attack traffic aggregation. For example, consider a
local solution where there is a filter installed at an
ingress point only a few hops away from the
victim. According to this cost function, g will
be high, capturing the situation where the attack
is still effectively disrupting the victim’s local
network.

5.1.2. Tracing metrics—Let Ci be a closed set
of candidate nodes and ACi

be the set of attack
nodes in Ci. For a given attack incidence (A, v) and
set of tracer nodes T, suppose k of closed sets of
candidate nodes are obtained after tracing. In this
case, the victim will have to search for attack nodes
within C1, . . . , Ck. We shall define two metrics. The
first one, F1, is given by

Note that F1 is the ratio of the number of identi-
fied attack nodes to the total number of attack
nodes. Here, (1 - F1) is the portion of attack nodes
that lie in open candidate sets, and are assumed to
remain undetected. To capture how ‘localized’ the
portion of identified attack nodes is, we define a
second metric, F2 as

Note that |Ci|/|ACi
| represents the search effort,

i.e., the average number of nodes to be searched in
order to determine attack node(s) in Ci. Thus, F2 is
the average search effort over the closed set of

F2
1

1=
=
Âk

C
A

i

Ci

k

i

F1
1= =Â A

A
Ci

k
i

c A v F w a d a bf ai i i
a Ai

, , ,() = () ()()
Œ

Â

c A v w a d a vi i
a Ai

, ,() = () ()
Œ

Â candidate nodes. In summary, F1 represents how
many attack nodes are identified and F2 captures
the search effort or degree of localization achieved
by the tracing mechanism.

—5.2. Simulation Results—

For an attack incidence (A, v), we randomly
select |A| nodes (excluding the victim) in a given
topology to be attack nodes. We assume that attack
nodes generate the same amount of attack traffic,
i.e., w(ai) = c, i = 1, . . . , |A|. We have built a tool
to estimate the performance measures proposed in
Sections 5.1.1 and 5.1.2. For all of our results, each
performance metric value is the average value of
100 simulation runs (attack incidences). For the
results associated with tracing, we set 5 as the TTL
value for the solicit tracing packets. For simplicity,
we assume that filtering is also performed at
boundary tracer nodes, which can identify all
boundary tracer nodes. In the simulation, we do
not consider dynamic changes in the configuration
of attack nodes or routes of attack packets during
each attack incidence.

5.2.1. Simulation I—In this simulation we use
a real tree topology from Reference 15. The tree
was obtained by performing traceroutes at the
server, www.bell-labs.com, to its clients and
consists of around 23,000 distinct nodes. We con-
sidered a scenario where randomly placed nodes
launch an attack to the server. For the placement
of tracer or filter nodes in the network, we choose
a random strategy for a given coverage ratio b, i.e.,
b is the portion of total nodes in the network that
are filter or tracer nodes.

Figure 6 shows the relative attack cost, i.e., g,
resulting from an attack involving 25 nodes and
varying filter coverage ratios. Note that it has a
convex shape, i.e., a small increase in coverage
ratio can cause a large reduction in the attack
traffic when the coverage ratio is small. We
observe that one can reduce the attack traffic by
80% (relative attack cost is 0.2), with a filter cover-
age of 30%.

Figure 7 shows g for several coverage ratios and
a varying number of attack nodes from 25 to 1600.
We observe that g is independent of the number of
attack nodes. To explain this result, we notice that
c(A, v, F) is roughly given by |A|w(ai)E[d*] where

DEFEATING DISTRIBUTED DENIAL OF SERVICE ATTACKS

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50
5

NEM543 8/25/2004 5:49 PM Page 9

E[d*] is the expected distance from attack nodes
to their boundary filter nodes. Likewise c(A, v)
becomes |A|w(ai)E[d] where E[d] is an expected
distance from attack nodes to the victim. Since we
assume w(ai) is constant, g simply depends on the
ratio of the above two distances.

Figures 8 and 9 show F1 and F2, respectively, for
an attack of 25 nodes. At a 30% coverage ratio,
around 75% attack nodes can be detected and on
average attack nodes can be localized to within
9 nodes. Figures 10 and 11 show results for F1

and F2, respectively, for various coverage ratios

J. LEE AND G. DE VECIANA

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50

1 5 10 20 30 50 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coverage ratio (b)

R
el

at
iv

e
at

ta
ck

 c
os

t (
g

)

50 100 200 400 800 1600
0

0.2

0.4

0.6

0.8

1

Number of attack nodes

R
el

at
iv

e
at

ta
ck

 c
os

t (
 g

)

5%
10%
20%
30%

5 10 20 30 50 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coverage ratio (b)

F
1

5 10 20 30 50 80
0

2

4

6

8

10

12

Coverage ratio (b)

F
2

Figure 6. Relative attack cost (|A| = 25) in Simu-
lation I

Figure 7. Relative attack cost in Simulation I

Figure 8. F1(|A| = 25) in Simulation I Figure 9. F2(|A| = 25) in Simulation I

50 100 200 400 800 1600
0

0.2

0.4

0.6

0.8

1

Number of attack nodes

F
1

5%
10%
20%
30%

50 100 200 400 800 1600
0

2

4

6

8

10

12

Number of attack nodes

F
2

5%
10%
20%
30%

Figure 10. F1 in Simulation I Figure 11. F2 in Simulation I

NEM543 8/25/2004 5:49 PM Page 10

varying the number of attack nodes. We make the
following observations. First, F1 is independent of
the number of attack nodes. Second, F2 is decreas-
ing as the number of attack nodes increases. These
can be explained as follows. As the number of
attack nodes increase, one can see more attack
nodes will be placed in closed sets of candidate
nodes, which ensures more attack nodes will be
detected. Thus F1 is likely to be independent of the
number of attack nodes. Furthermore, F2 will
decrease since there are more attack nodes found
in the same closed candidate sets as the number of
attack nodes increases.

5.2.2. Simulation II—For the second set of
simulations, we generated a 2000-node random
transit-stub graph using GT-ITM.16 This topology
is composed of interconnected transit and
stub domains where domains are assumed
autonomous. In this set-up, we randomly choose
a victim node for each attack incidence. To inves-
tigate the performance impact of filter or tracer
location, we explore a border placement strategy,
i.e., randomly choose the location of filter or tracer
nodes among border nodes of domains versus ran-
domizing over all possible locations. This reflects
the case where a network administrator of a
domain decides to provide services, the adminis-
trator is likely to place filter or tracer nodes at
border nodes rather than at random locations
within the domain.

The results for different numbers of attack nodes
show the same qualitative behavior as those in the
previous experiments. We exhibit the results for a
50 node attack. Figure 12 shows g for various
placements. For the same coverage ratio 5% and
10%, border placement performs better than
random, and border placement with 15% coverage
outperforms random placement with 30% cover-
age. Figures 13 and 14 show results for F1 and F2,
respectively. Here, we obtained an encouraging
result that even a 15% deployment of tracer nodes
at border nodes can detect more than 90% of the
attack nodes and on average attack nodes are
localized to within 10 nodes. Additionally, we
made the following observations. First, border
placement can detect more attack nodes than
random placements. Second, all random place-
ments have a lower F2 value than border place-
ment. Indeed even a small coverage ratio of border
placement can create a well-balanced number of

candidate sets. This reduces the number of open
candidate sets, which achieves high F1. Compared
to this, with random placement, the number of
nodes in the candidate nodes set vary more dra-
matically. This results in small F1, which identifies
the smaller number of open candidate sets.

DEFEATING DISTRIBUTED DENIAL OF SERVICE ATTACKS

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50

Rand 5% Bor 5% Rand 10% Bor 10% Rand 30% Bor 15%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
el

at
iv

e
at

ta
ck

 c
os

t (
 g

)

Rand 5% Rand 10% Bor 5% Rand 30% Bor 10% Bor 15%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1

Bor 5% Bor 10% Bor 15% Rand 5% Rand 10% Rand 30%
0

2

4

6

8

10

12

14

F
2

Figure 12. Relative attack cost (|A| = 50) in
Simulation II

Figure 13. F1(|A| = 50) in Simulation II

Figure 14. F2(|A| = 50) in Simulation II

NEM543 8/25/2004 5:49 PM Page 11

However, once it is identified to be open, its search
effort becomes less, leading to a smaller F2 value.

5.2.3. Simulation III—Finally, we performed
filtering simulations on a 145-node routing tree
rooted at the server, www.bell-labs.com in Ref-
erence 15. The motivation for this set of simula-
tions is to explore the case where the victim (the
server) has full control over the placement of filter
nodes on a mid-size network.

We considered an optimal placement to be one
that minimizes the total attack cost under the
assumption that each node in the network can be
an attack node and generate the same amount of
attack packets. This problem is equivalent to the
cache location problem studied in References 15
and 17, thus we used their dynamic programming
formulation to find optimal placements.

Figure 15 shows the relative attack cost results
of 25 attack nodes for random versus optimal
placements. As can be seen, optimal placements
outperform random. A 10% coverage with optimal
placement can reduce attack traffic by 80%.

6. Discussion
—6.1. Implementation Issues—

In this section, we briefly present various imple-
mentation methods for the components described
in Section 2.2. A number of intrusion detection
systems (IDS), or identification algorithms,18 can
serve as detecting components. Note that the
ability to obtain attack signatures from attack
packets is a critical requirement for our framework

and is itself a significant on-going topic of a
number of intrusion detection systems. For tracing
components, input-debugging19 can check tracing
results only for on-going traffic. By contrast,
logging19 and hash-based logging6 methods can
provide a post-mortem tracing service which can
check if even past traffic (before a query) contains
attack packets. Furthermore, one can envisage
that stand-alone data capture devices (e.g.,
RMON probes20) or sniffers (e.g., tcpdump) can be
used to provide on-going tracing services in a
nonintrusive way, i.e., not affecting routing perfor-
mance. (See Section 7 for more detailed explana-
tions for each tracing method.) Finally note that
there are various filtering services available which
operate at different layers of the protocol stack—
e.g., IP-level, TCP-level and application level.

—6.2. Inaccurate Map and Dynamic
Routing—

As seen in Section 4, our tracing mechanism
relies on a map of upstream routers and traceroute
results. In this section, we consider the impact of
inaccurate information on our tracing mechanism.
Even though the network map can be obtained
using the tools described in Section 4.2.1, we
observe that it is difficult to obtain an updated
accurate Internet topology. However, since our
goal is not to pinpoint the exact attack origins,
such a map does not have to be perfect. Further-
more, note that even without a map, the expanded
attack graph itself can be a useful tool for identi-
fying the regions where attacks originated. Also, a
map can be obtained in a post-mortem manner
after an attack ends.

Note that traceroute may not work as desired
due to the manner in which routers are configured
along given paths. In addition, traceroute may not
provide an accurate attack path due to changes
in routing and attack patterns on parallel routes.
However, as mentioned above, our goal is to
obtain a set of candidate nodes and not to identify
the exact attack origins. Thus, inaccurate path
information can be still useful. Furthermore, if
traceroute is performed while an attack continues,
attack packets and traceroute packets will be for-
warded based on the same unicast routing table,
which produces a more accurate approximate
attack graph.

J. LEE AND G. DE VECIANA

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50

Rand 5% Rand 10% Opt 5% Rand 30% Opt 10%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 R
el

at
iv

e
at

ta
ck

 c
os

t (
 g

)

Figure 15. Optimal vs. Random (|A| = 25) in
Simulation III

NEM543 8/25/2004 5:49 PM Page 12

—6.3. Support for Multicasting—

Multicasting can be supported by the following
two classes: network-level (IP multicast) and
application-level solutions.

6.3.1. IP multicast routing protocol—IP
multicast21 is an efficient one-to-many delivery
method which can provide a number of opera-
tional advantages for content and network
providers by reducing the overall resources con-
sumed to achieve such distribution. A single
packet transmitted by the source traverses each
link in the multicast distribution tree to all
receivers in the multicast group. In this section, we
consider which IP multicast routing protocol will
be suitable for our framework. Current imple-
mentations of multicast routing service, can be
classified into two types: source tree and shared
tree routing. In source tree routing, the distribution
tree is a reverse shortest-path tree which is formed
by overlaying shortest path from each member to
a source. In shared tree routing protocols, e.g.,
CBT22 or PIM-SM,23 the distribution tree is com-
monly shared by all members irrespective of the
sources. Note that in our approach, during a time
without attacks, there are no data packets injected
into a multicast session. This is because the multi-
cast session is not used for data distribution
among members but only for tracing or filtering
request distributions from unpredictable victims.
Therefore, the cost for maintaining the multicast
session becomes an important issue when select-
ing a multicast routing protocol. In source tree
routing, the distribution tree is maintained by peri-
odic reverse-path forwarding and pruning, which
incur large overheads. Thus we conclude that a
shared tree routing protocol is more suitable than
a source tree for our approach.

Shared multicast routing protocols can be
further classified into two types: unidirectional and
bidirectional shared tree routing protocols. In a
unidirectional shared tree protocol, the sender’s
packets go to the core first and the core multicasts
them to others. By contrast, in bidirectional shared
tree routing protocols, members can communicate
with each other without going through the core
since packets can travel both up toward the core
and down from the core. Thus, once a shared tree
routing is used, unidirectional routing protocols
are inefficient for scoped multicast and communi-

cations among neighborhoods. The larger the mul-
ticast session and the more demands for scoped
multicast, the larger the communication overheads
will be in unidirectional shared multicast rout-
ing protocols. Reflecting these observations, the
long term inter-domain routing solution, Border
Gateway Multicast Protocol (BGMP)24 constructs
bidirectional shared trees. Since our tracing mech-
anism uses scoped multicast to find negative tracer
nodes, bidirectional shared tree routing protocols
will be more efficient in our framework.

6.3.2. Application-level multicast—Despite
its efficient network resource use, the deployment
of IP multicast has been hampered by a number of
challenges including the need to modify infra-
structure and the need to support reliability, flow,
and congestion control.

Limited network layer support for multicast in
the Internet today, has led to active research on
end-system approaches,25–31 which do not require
such infrastructure support, i.e., all multicast
related functionalities, including group manage-
ment and packet forwarding, are implemented at
end systems. In this architecture, hosts in the
group co-operate to construct an overlay structure
of unicast connections.

Thus, to remove the hurdle of sluggish IP
multicast deployment, we can use multicasting
solutions based on end-system approaches. For
example, the work in Reference 32 provides a
scalable application-level multicast solution.

—6.4. Economic Incentives—

Irrespective of the existence of feasible solutions
to mitigate DDoS attacks, a significant hurdle may
be the lack of viable economic incentives.33 For
example, installing ingress filters in a domain con-
sumes valuable router resources and reduces the
overall routing performance. However, its benefi-
ciaries are likely to be other domains rather than
the domain performing ingress filtering. In our
framework, we can envisage the following eco-
nomic model: victims pay a fee for the services
provided by tracer and filter nodes. Clearly this
gives an incentive to provide tracing and filtering
services to victims in other domains. The payment
may be dependent on the number of attack packets
dropped, the number of tracing or filtering report

DEFEATING DISTRIBUTED DENIAL OF SERVICE ATTACKS

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50

NEM543 8/25/2004 5:49 PM Page 13

packets and so on. One can further consider that
victims pay a fee for detecting services. We leave
the more detailed pricing mechanisms as future
work.

—6.5. Differentiated Services—

As described in Section 6.1, various implemen-
tation methods for tracing and filtering compo-
nents are available with different characteristics.
To allow such heterogeneity in implementation in
our framework, we can consider providing differ-
entiated services. Instead of having a single multi-
cast session for tracing (or filtering) service, we
create different multicast sessions for different
services. For example, there could be a multicast
session for post-mortem tracing or one for appli-
cation level filtering.

Note that this scheme allows flexible service
requests for victims and heterogeneity in different
implementation methods from different domains.
Depending on the attack scenarios, a victim can
request different services. For example, if a victim
detects an attack very late and the attack has
already ended, the victim can ask for a post-
mortem tracing service rather than tracing for an
on-going one. Given its service requirements, each
domain may use its own methods. This requires
less standardization across network domains,
allowing more heterogeneity.

7. Related Work
In this section, we discuss the pros and cons of

existing research efforts on defeating DDoS attacks
and the proposed approach in this paper.

—7.1. Detection and Mitigating
Approach—

There are two types of mitigation mecha-
nisms: host-based and router-based. Host-based
approaches34,35 try to detect and mitigate the
impact of attacks by an efficient control of
resources from the perspective of the operating
system on the victim side. Even though this helps
sustain a victim longer, the victim will eventually
give in to attacks. By contrast, in the router-based

approach,18 detection and mitigation of attacks are
performed at routers. This work defines an aggre-
gate as a particular set of packets causing the over-
load and proposes an identification algorithm for
detection and control mechanisms which can
reduce such aggregates. A SYN flooding detection
mechanism has recently been proposed in Refer-
ence 36. It is based on discrepancies between SYN
and FIN packets. It is stateless and requires low
computational overhead to detect SYN flooding
attacks.

—7.2. Proactive Filtering Approach—

Ingress filtering2 and route-based filtering3¶

proactively prevent attacks employing spoofing.
Routers are configured to drop packets whose
source IP addresses are illegitimate based on
routing and network topology information.
Ingress filtering uses simple direct connectivity
information, so it is usually performed at border
routers in stub networks.2 However, in transit net-
works, it lacks the ability to distinguish between
legitimate and illegitimate packets and its effec-
tiveness can only be guaranteed via wide de-
ployment. To overcome these weaknesses, a
route-based mechanism3 performs filtering
using source reachability information imposed by
routing and network topology. By using additional
network topology information, route-based filter-
ing requires less coverage than ingress filtering to
be effective.

—7.3. Tracing Approach—

As indicated by recent work on tracing mecha-
nisms,6,11,12 tracing can be an effective way of dis-
couraging attackers. The identified compromised
hosts intentionally or unwillingly participating in
attacks can be isolated from the Internet or can
provide clues to the real attacker. Existing tracing
approaches can be classified into the following two
types.

The first type is a query-based approach where
trail information is queried to tracing components

J. LEE AND G. DE VECIANA

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50
¶Route-based filtering approach also has a tracing by-product, i.e.,
attack origins can be localized to a set of AS (Autonomous System)
sites.

NEM543 8/25/2004 5:49 PM Page 14

in the network. The query is usually performed in
the reverse direction of the attack packets, i.e.,
from the victim toward the source(s) of the attack.
Checking whether attack packets have been for-
warded by given routers can be done by several
currently available techniques: logging packets
using monitoring tools19 or input debugging
which can identify which ingress port was used
by packets departing on a given egress port.
However, there may be a high storage overhead
for logging methods and some adverse effects on
routing functionality when input debugging is
used. To overcome these problems, in the hash-
based logging approach,6 routers store packet
digests generated by a hash function rather than
the packets themselves. Upstream routers to the
victim are successively queried for attack packets
in a reverse path flooding manner. A key advan-
tage of this approach is that it is capable of tracing
a single recently forwarded packet while keeping
privacy. However, tracing queries should be initi-
ated early enough that appropriate digest entries
have not been overwritten by more recent packets.
Note that since queries are sequentially processed
in the query-based approach, the malfunctioning
of some tracing components may not deliver a
query to upstream routers, which result in the
failure of the tracing operation.

Another tracing alternative is based on partial
path information which is proactively sent to end
hosts when packets are forwarded. Once attacks
are detected, the victim can reconstruct the routes
attack packets took based on stored trail informa-
tion. In the iTrace method,37,38 with a low proba-
bility routers send extra ICMP messages including
their own addresses to the end host. By contrast,
IP marking schemes11,12 can eliminate the extra
ICMP messages used in iTrace by having routers
probabilistically inscribe edge information (repre-
sented by two routers at the end of a link) onto a
traversing packet. The advantage of this approach
is that it enables incremental deployment while
keeping the router’s overhead low. However, as
pointed out in Reference 39, in the presence of
multiple attack nodes, the approach suffers from a
scalability problem, i.e., uncertainty in identifying
origins of attack packets increases proportionally
with the number of nodes in a distributed DoS
attack. Furthermore, due to its probabilistic char-
acter, the solution is confined to tracing attacks
associated with large volumes of traffic. Note

that in this second approach, end hosts need to
proactively save incoming packets irrespective of
whether an attack is ongoing, requiring large
storage overheads at end hosts.

The work in Reference 7 deals with mitigating
DDoS attacks based on IP marking techniques. The
key idea was to give blocking components access
to attack graph information obtained by IP
marking techniques and probabilistically filter out
more packets traversed ‘infected’ edges compared
to packets traversed ‘clean’ edges. This can
increase the throughput of legitimate traffic.
However, in this approach, dropping legitimate
traffic cannot be avoided. Schnackenberg et al.40

propose an IDIP (Intruder Detection and Isolation
Protocol) for automated intrusion response
systems that can detect a DoS attack and request
upstream network elements to block the traffic.
Their work focuses on standardization of a set of
protocols for interaction among infrastructure
components to realize a simple query-based
tracing idea.

—7.4. Characteristics of our
Solution—

In a proactive filtering approach, filters need to
maintain a large number of filtering rule sets and
examine every single packet. We envisage a large-
scale filtering framework, which suffers from
the complexity of managing a large number of
filtering rule sets. Furthermore, if attacks are
infrequent, valuable resources may be wasted if
irrelevant filtering rule sets are applied to packet
flows. By contrast, our filtering mechanism has
soft-state properties, e.g., renewal and expiration
of filtering, which significantly reduces com-
plexity of managing filtering rule sets.

The conventional reactive filtering approach
confined to a single administrative domain con-
taining the victim has its limitation. Once attack
packets (possibly generated at multiple locations)
have been aggregated into large traffic flows,
attack traffic can overwhelm the local domain and
make local filters inoperable; as a result, the filters
are victimized. Note that our filtering mechanism
is designed to quickly identify a set of boundary
filter locations so that attack packets might be
dropped as close as possible to their origins before
they are aggregated.

DEFEATING DISTRIBUTED DENIAL OF SERVICE ATTACKS

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50

NEM543 8/25/2004 5:49 PM Page 15

The key requirement for reactive approaches—
promptness—can be met by the use of multicast
communication in our framework. This is the case
when a request packet is distributed in real time
via multicast, so filter/tracer nodes can respond
concurrently and quickly. The use of multicasting
provides the following additional advantages.
First, there is no overhead in managing a list of
co-operative filter/tracer nodes on detector or
filter/tracer nodes, leading to improved scalabil-
ity. This feature comes from the member abstrac-
tion property of multicast service, i.e., members
can join and leave a multicast session without
explicit knowledge of its membership. Second, the
proposed mechanism is robust even in the pres-
ence of some malfunctioning filter nodes or packet
losses. In a sequential query-based approach, the
query process may be terminated due to packet
losses or malfunctioning of some filter nodes. In
such situations, our approach may not result in
optimal filtering/tracing operation, i.e., filtering is
performed in non-boundary filter nodes (or attack
graph is not accurate), but it may still work well.

8. Conclusion
In this paper, we have presented a new

multicast-based filtering and tracing service
framework to defeat DDoS attacks. The proposed
filtering mechanism pushes filtering operation to
boundary nodes so that attack packets might be
dropped as close as possible to their origin(s). If
we assume that attacks are infrequent, our filter-
ing mechanism can achieve more efficient use of
network resources versus proactive solutions.
Indeed when no attacks are ongoing, only a mul-
ticast session needs to be maintained, without
overheads associated with a filtering operation.
We also consider the goal of determining sets of
candidate nodes for localizing attack origins under
a partial deployment of tracing components, and
propose a mechanism to achieve this end. Finally
note that the proposed tracing mechanism can be
used for a network management purpose of mon-
itoring spatial flow of traffics.41

A significant challenge of large-scale deploy-
ment of both mechanisms is handled by a novel
use of multicasting and soft-state. Furthermore the
use of multicasting provides a number of desirable
characteristics, e.g., fast response—one of the key

requirements for reactive solutions, and robust-
ness. Additional contributions of our work include
a number of practical considerations: (1) address-
ing economic incentives, (2) using currently avail-
able equipment and technologies without major
router modifications, and (3) allowing incremental
and partial deployment.

The performance evaluation for the proposed
framework shows that a small coverage ratio of
well-placed filter or tracer nodes can achieve effi-
cient blocking and localizing of attacks.

Acknowledgements
We wish to thank P. Krishnan, Danny Raz and
Yuval Shavitt for providing us with real topology
data. We also would like to thank Kyoil Kim for
his helpful discussions.

References
1. Computer Emergency Response Team, ‘CERT

advisory ca-2000-01 denial-of-service develop-
ments,’ http://www.cert.org/advisories/CA-2000-
01.html.

2. Ferguson P, Senie D. Network ingress filtering: Defeat-
ing Denial of Service attacks which employ IP source
address spoofing, RFC 2267, http://www.ietf.org/rfc,
Jan. 1998.

3. Park K, Lee H. On the effectiveness of route-based
packet filtering for distributed DoS attack preven-
tion in power-law Internets, in Proc. ACM
SIGCOMM, 2001.

4. Cisco Corporation, Characterizing and tracing
packet floods using Cisco routers, www.cisco.
com/warp/public/707/22.pdf.

5. Wang H, Bose A, El-Gendy M, Shin KG. IP easy-
pass: Edge resource access control, in Proc. IEEE
Infocom, 2004.

6. Snoeren AC, Partridge C, Sanchez LA, Jones CE,
Tchakountio F, Kent ST, Strayer WT. Hash-based IP
traceback, in Proc. ACM SIGCOMM, 2001.

7. Sung M, Xu J. IP traceback-based intelligent packet
filtering: A novel technique for defending against
Internet DDoS attacks, in IEEE International Confer-
ence on Network Protocols, 2002.

8. IETF secure multicast group, http://www.
securemulticast.org.

9. Canetti R, Garay J, Itkis G, Micciancio D, Naor M,
Pinkas B. Multicast security: A taxonomy and effi-
cient constructions, in Proc. IEEE Infocom, 1999.

J. LEE AND G. DE VECIANA

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50
6

NEM543 8/25/2004 5:49 PM Page 16

10. Li J, Reiher P, Popek G. Resilient self-organizing
overlay networks for security update delivery. IEEE
Journal on Selected Areas in Communications 2004.

11. Savage S, Wetherall D, Karlin A, Anderson T. Prac-
tical network support for IP traceback, in Proc. ACM
SIGCOMM, 2000.

12. Song DX, Perrig A. Advanced and authenticated
marking schemes for IP traceback, in Proc. IEEE
Infocom, 2001.

13. Skitter, http: //www.caida.org/tools/
measurement/skitter/.

14. Internet mapping, http://cm.bell-labs.com/
who/ches/map/dbs/index.html/, 1999.

15. Krishnan P, Raz D, Shavitt Y. The cache location
problem, IEEE/ACM Transactions on Networking
2000; 8:

16. Zegura EW, Calvert KL, Bhattacharjee S. How to
model an Internet, in Proc. IEEE Infocom, 1996.

17. Li B, Golin MJ, Ialiano GF, Deng X. On the optimal
placement of web proxies in the Internet, in Proc.
IEEE Infocom, 1999.

18. Mahajan R, Bellovin SM, Floyd S, Ioannidis J,
Paxson V, Shenker S. Controlling high bandwidth
aggregates in the network, in http://www.
aciri.org/pushback/pushback-toCCR.ps, submitted
to CCR, July 2001.

19. Sager G. Security fun with OCxmon and cflowd, in
Internet 2 Working Group Meeting, Nov. 1998,
http://www.caida.org/projects/NGI/content/
security/1198.

20. Stallings W, SNMP, SNMP v2, SNMP v3 and RMON
1 and 2(Third Edition), Addison-Wesley, Inc., 1999.

21. Deering SE. Multicast Routing in a Datagram Inter-
network, PhD. thesis, Stanford University, 1991.

22. Ballardie T, Francis P, Crowcroft J, Core based
trees(CBT): An architecture for scalable inter-
domain multicast routing, in Proc. ACM SIGCOMM,
1993.

23. Estrin D, Farinacci D, Helmy A, Thaler D, Deering
S, Handley M, Jacobson V, Liu C, Sharma P, Wei L.
Protocol Independent Multicast-Sparse Mode
(PIM-SM): Protocol Specification, RFC 2362,
http://www.ietf.org/rfc, June, 1998.

24. Thaler D, Estrin D, Meyer D. Border gateway mul-
ticast protocol (BGMP): Protocol specification, IETF
draft, draft-ietf-bgmp-spec-01.txt, Mar. 2000.

25. Francis P. Yoid: Extending the Internet multi-
cast architecture, in Tech. reports, ACIRI,
http://www.aciri.org/yoid, 2000.

26. Chawathe Y. Scattercast: An architecture for Internet
broadcast distribution as an infrastructure service, PhD.
thesis, University of California, Berkeley, 2000.

27. Jannotti J, Gifford D, Johnson K, Kasshoek F, O’Toole
J. Overcast: Reliable multicasting with an overlay
network, in USENIX OSDI, 2000.

28. Chu Y, Rao S, Seshan S, Zhang H. Enabling confer-
encing applications on the Internet using an overlay
multicast architecture, in Proc. ACM SIGCOMM,
2001.

29. Pendarakis D, Shi S, Verma D, Waldvogel M. ALMI:
an application level multicast infrastructure, in 3rd
USENIX Symposium on Internet Technologies and
Systems (USITS), 2001.

30. Ratnasamy S, Francis P, Handley M, Karp R,
Shenker S. A scalable content-addressable network,
in Proc. ACM SIGCOMM, 2001.

31. Zhao B, Kubiatowicz J, Joseph A. Tapestry: An infra-
structure for fault resilient wide-area location and
routing, in Tech. Report. UCB//CSD-01-1141, U. C.
Berkeley, 2001.

32. Ratnasamy S, Handley M, Karp R, Shenker S.
Application-level multicast using content-
addressable networks, in Proc. of Networked Group
Communication (NGC), 2001.

33. Geng X, Whinston AB. Defeating distributed denial
of service attacks, in IT Pro, July 2000.

34. Banga G, Druschel P, Mogul J, Resource containers:
A new facility for resource management in server
systems, in Proc. of the 1999 USENIX/ACM Sympo-
sium on Operating System Design and Implementation,
Feb. 1999.

35. Spatscheck O, Peterson L. Defending against denial
of service attacks in Scout, in Proc. of the 1999
USENIX/ACM Symposium on Operating System
Design and Implementation, Feb. 1999.

36. Wang H, Zhang D, Shin KG. Detecting SYN flood-
ing attacks, in Proc. IEEE Infocom, 2002.

37. Bellovin SM. ICMP traceback messages, IETF draft,
draft-bellovin-itrace-05.txt, Mar. 2000.

38. Wu SF, Zhang L, Massey D, Mankin A. Intention-
driven ICMP trace-back, IETF draft, draft-wu-itrace-
00.txt, Feb. 2001.

39. Park K, Lee H. On the effectiveness of probabilistic
packet marking for IP traceback under denial of
service attack, in Proc. IEEE Infocom, 2001.

40. Schnackenberg D, Djahandari K, Sterne D. Infra-
structure for intrusion detection and response, in
Proc. First DARPA Information Survivability Confer-
ence and Exposition, 2000.

41. Duffield NG, Grossglauser M. Trajectory sampling
for direct traffic observation, IEEE/ACM Transactions
on Networking, 2001; 9(4):280–292. �

DEFEATING DISTRIBUTED DENIAL OF SERVICE ATTACKS

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2004; 14: 000–000

5

10

15

20

25

30

35

40

45

50

If you wish to order reprints for this or any
other articles in the International Journal of
Network Management, please see the Special
Reprint instructions inside the front cover.

NEM543 8/25/2004 5:49 PM Page 17

AUTHOR QUERY FORM

Dear Author,

During the preparation of your manuscript for publication, the questions listed below have arisen.
Please attend to these matters and return this form with your proof.

Many thanks for your assistance.

Query Query Remarks
References

1 Au? please supply full address

2 Au? current e-mail address?

3 Au? please supply fuller addresses and short
biographies

4 Au? ok now?

5 Au? ok now?

6 Au? Vol and page?

7 Au? page?

NEM543

Author Query Form (NEM543) 8/25/2004 5:49 PM Page 1

